

ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019/AC:2021 for:

THE INTERNATIONAL EPD® SYSTEM The International EPD® System: Program operator: EPD International AB Registration number: EPD-IES-0021505

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at <u>www.environdec.com</u>

weber MS+ Moisture Sealer

Version 1 Date of publication: 2025/05/23 Validity: 5 years Valid until: 2030/05/23 Scope of the EPD[®]: Finland & Baltics

Programme information

PROGRAMME:	The International EPD [®] System
ADDRESS:	EPD International AB - Box 210 60 - SE-100 31 Stockholm - Sweden
WEBSITE:	www.environdec.com
E-MAIL:	info@environdec.com

CEN standard EN 15804:2012+A2:2019/AC:2021 as the Core Product Category Rules (PCR) **Product category rules (PCR):** PCR 2019:14 Construction Products, version 1.3.2

PCR review was conducted by: The Technical Committee of the International EPD® System. See www.environdec.com for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact.

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

Third party verifier: Anni Oviir, LCA Support - Rangi Maja OÜ

Tlf: +372 53448064 - email: anni.oviir@lcasupport.com

Approved by: The International EPD© System

Procedure for follow-up of data during EPD validity involves third part verifier:
Yes No

The EPD owner has the sole ownership, liability and responsibility for the EPD.

EPDs within the same product category but registered in different EPD programmes may not be comparable. For two EPDs to be comparable, they shall be based on the same PCR (including the same version number up to the first two digits) or be based on fully aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical DU/FU); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterization factors); have equivalent content declarations; and be valid at the time of Comparison. For further information about comparability, see EN 15804:2012+A2:2019/AC:2021 and ISO 14025:2006.

Product information

Product name: weber MS+ Moisture Sealer

Declared unit: 1 liter of product

UN CPC CODE: 35110 Paints and varnishes and related products

GTIN Number(s): 6415910050214 (3 l), 6415910050207 (10 l)

Company information

Manufacturer: Saint-Gobain Finland Oy, Strömberginkuja 2 FI-00380 Helsinki, Finland

Website: www.saint-gobain.fi

Production plant(s): Parainen, Finland

Management system - related certifications: ISO 9001

LCA & EPD Information

Owner of the declaration: Saint-Gobain Finland Oy

Contact person: Anne Kaiser (anne.kaiser@saint-gobain.com)

EPD[®] **prepared by:** Päivi Pesu (<u>paivi.pesu@saint-gobain.com</u>) and Yves Coquelet (yves.coquelet@saint-gobain.com)

Type of EPD: Cradle to gate with options, modules C1-C4, module D and with optional modules A4 and A5

Geographical scope of the EPD®: Finland and Baltic countries

Year of data collection: 2024

Product description

Product description and description of use

This Environmental Product Declaration (EPD[®]) describes the environmental impacts of 1 liter of weber MS+ Moisture Sealer.

weber MS+ Moisture Sealer (FIN: weber MS+ Kosteussulku) is a plastic dispersion based moisture sealer and primer. The product is used for priming and moisture protection of walls, floors and, if necessary, ceilings in wet rooms before applying weber waterproofing or tiling. The product can be used as a primer before applying waterproofing compound, as a moisture sealer under the backsplash tiling in kitchen and on the walls of toilet before tiling, and as a moisture sealer for plasterboard floors before tiling. weber waterproofing work instructions should be followed. weber MS+ Moisture Sealer is part of weberSafe and weberFast waterproofing systems.

All technical characteristics and properties for the product can be found on the website: <u>www.fi.weber/vedeneristyksen-ratkaisut-ja-tuotteet/nestemaiset-vedeneristeet-ja-epoksit/weber-ms-kosteussulku</u>

This EPD applies for one specific product produced in one single plant.

Technical data/physical characteristics:

Technical data / physical characteristics					
Density	approx. 1,2 kg/l				
Material consumption	Diluted: approx. 0,1 l/m ² Undiluted: approx. 0,2 l/m ²				
Application temperature	+15+30 °C				

Declaration of the main product components and/or materials

Description of the main components and/or materials:

Product components	Weight (%)	Post-consumer ma weight (%)	terial Biogenic material weight (% and kg C/ DU)
Dispersion	80 - 100%	0%	0 % and 0 kg
Additives	0 - 10%	0%	0 % and 0 kg
Sum	100%	0%	0 % and 0 kg

Packaging materials*	Weight (kg)	Weight-% (vs the product)	Biogenic material, weight (kg C/ DU)		
Plastic container w/ cap	0,036 kg	3,0 %	0 kg		
Paper labels	0,001 kg	0,1 %	<0,001 kg		
LDPE film	<0,001 kg	0,02 %	0 kg		
Wooden pallet	0,03 kg	2,8 %	0,01 kg		

*) Most representative packaging is declared.

Hazardous substances

At the date of issue of this declaration, there is no "Substance of Very High Concern" (SVHC) in concentration above 0,1% by weight, and neither do their packaging, following the European REACH regulation (Registration, Evaluation, Authorization and Restriction of Chemicals).

The verifier and the program operator do not make any claim nor have any responsibility of the legality of the product.

LCA calculation information

Parameter	Information
Type of EPD	Cradle to gate with options, modules C1–C4, module D and with optional modules A4-A5
Declared unit	1 liter of product
System boundaries	Mandatory stages = A1-A3; C1-C4 and D Optional stages = A4-A5
Scenarios	The scenarios included in this study are currently in use and are representative for one of the most probable alternatives.
Reference service life (RSL)	The Reference Service Life (RSL) of the product is 50 years. This 50-year value is the amount of time that we recommend our products last for without refurbishment and corresponds to standard building design life.
Cut-off rules	All data is available, no cut-off rules has been applied. In the case that there is not enough information, the process energy and materials representing less than 1% of the whole energy and mass used can be excluded (if they do not cause significant impacts). The addition of all the inputs and outputs excluded cannot be bigger than the 5% of the whole mass and energy used, as well of the emissions to environment occurred. Flows related to human activities such as employee transport are excluded. The construction of plants, production of machines and transportation systems are excluded since the related flows are supposed to be negligible compared to the production of the building product when compared at these systems lifetime level.
Allocations	Allocation has been avoided when possible and when not possible a mass allocation has been applied. The polluter pays and the modularity principles as well have been followed.
Geographical coverage and time period	Scope: Finland and Baltic countries Data is collected from one production site located in Finland Data collected for the year 2024
Background data source Software	The databases Sphera 2023.2 and ecoinvent v.3.9.1 Sphera LCA for experts (GaBi) 10

LCA scope

Oystern bo	anaan		-111010			looiai	00)										
	Prod	luct sta	age		Construction Stage Use stage					End of life stage				Benefits & loads beyond the system boundary			
	Raw material supply	Transport	Manufacturing	Transport	Construction-Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-recovery
Module	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Modules declared	x	х	х	х	х	ND	ND	ND	ND	ND	ND	ND	х	х	х	х	х
Geography	GLO	GLO	FIN	FIN & Baltics	EU-27	-	-	-	-	-	-	-	FIN & Baltics	FIN & Baltics	FIN & Baltics	FIN & Baltics	FIN & Baltics
Specific data used ¹	>2%	GWP- G	GHG														
Variation products		0%															
Variation sites		0%															

Life cycle stages

¹ For this study, specific data is considered as energy and water consumptions, and wastes related to the manufacturing process, and transportation.

A1-A3. Product stage

The product stage of the product is subdivided into 3 modules:

A1. Raw materials supply

This module includes the extraction and transformation of raw materials.

A2. Transport to the manufacturer

This module includes the transportation of raw materials to the manufacturing site. The modelling includes road and sea transportations.

A3. Manufacturing

This module includes the manufacture of products and the manufacture of packaging. Packaging related flows in the production process and all upstream packaging are considered at this stage. The processing of any waste arising from this stage is also included.

The manufacturing activities include mixing, packing and internal transportation. During the manufacturing process, electricity based on renewable electricity bought with Guarantee of Origin (GO) has been used. The amount of electricity purchases with GO's correspond to 88% of the electricity consumed at the manufacturing site. The remaining 12% of electricity consumed is generated at the manufacturing plant on photovoltaic panels, leaving 0% to be covered by Finnish national grid mix.

Electricity information

The manufacturing plant uses the following electricity description.

Parameter	Value / description
Location	Representative of the manufacturing site in Finland
Share of electricity covered by Guarantee of Origin	88% of electricity consumption is covered by GO 12% of electricity consumption is covered by own generation
Geographical representativeness description	Split of electricity consumed: Hydro: 88% Photovoltaics:12%
Reference year	2024
Type of dataset	Cradle to gate from Sphera and ecoinvent databases
Source	Sphera dataset (2023) and Vattenfall
CO ₂ emission (kg CO ₂ eq. / kWh) (Based on Climate Change Fossil Indicator)	Hydro: 0,00617 kg of CO ₂ eq /kWh Photovoltaics: 0,0317 kg of CO ₂ eq /kWh

A4-A5. Construction process stage

The construction process is divided into 2 modules:

A4. Transport to the building site:

This module includes transport from the factory gate to the building site. Transport is calculated based on a scenario with the parameters described in the following table.

Parameter	Value / Description
Fuel type and consumption of vehicle or vehicle type	Freight truck, maximum load weight of 27 t and
used for transport e.g., long distance truck, boat, etc.	consumption of 0,38 liters diesel per km.

Capacity utilization (including empty returns)

90% of the capacity in weight 30% of empty returns

A5. Installation in the building:

This module includes the parameters for installing the product at the building site. The product can be applied manually, thus does not require energy. Ancillary materials are negligible. Therefore, the following is assumed:

Distance 212 km by truck

Parameter	Value / Description
Secondary materials for installation (specified by materials)	None
Water use	None
Other resource use	None
Quantitative description of energy type (regional mix) and consumption during the installation process	None
Wastage of materials on the building site before waste processing, generated by the product's installation (specified by type)	5% for product 100% for packaging
Output materials (specified by type) as results of waste processing at the building site e.g., of collection for recycling, for energy recovering, disposal (specified by route)	Product: 100% to landfill All packaging: 53% to recycling, 41% to landfill, 6% to recovery to energy
Reuse of pallet	7 times before end-of-life
Distance to waste treatment facilities	50 km to landfill by truck 50 km to recovery by truck

B1-B7. Use stage

The use stage is not declared as product use and maintenance are considered negligible and impacts to air, soil and water have not been studied.

C1-C4. End of Life Stage

This stage includes the next modules:

C1. Deconstruction, demolition

The de-construction of the product takes part in the demolition of the entire construction. It is assumed that energy used directly for the product has minor significance and can be neglected.

C2. Transport to waste processing

Transport to waste processing.

C3. Waste processing for reuse, recovery and/or recycling

Waste processing for reuse, recovery and/or recycling. Not applicable in this study.

C4. Disposal

The product is conservatively considered fully landfilled at the end of life.

Description of the scenarios and additional technical information for the end of life:

Parameter	Value / Description
Energy for de-construction / demolition	none

Collection process specified by type	1,2 kg collected with mixed construction waste.
Recovery system specified by type	none
Disposal specified by type	1,2 kg of product to landfill
Assumptions for scenario development (e.g., transportation)	The waste going to landfill is transported by truck with 27 t payload, consuming 0,38 liters diesel per km Distance of transport: 50 km

D. Reuse/recovery/recycling potential

The environmental benefits and loads from recyclable materials or energy recovery are considered as follows:

- Inputs of secondary materials: recycled raw materials for product and packaging, if relevant
- Outputs of secondary materials: packaging sent to recycling,
- Exported energy: packaging sent to incineration with energy recovery.

LCA results

As specified in EN 15804:2012+A2:2019/AC:2021 and the Product-Category Rules, the environmental impacts are declared and reported using the baseline characterization factors are from the ILCD. Raw materials and energy consumption, as well as transport distances have been taken directly from the manufacturing plant. Characterization factors of EN15804 are based on EF 3.1.

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

The results of the impact categories abiotic depletion of minerals and metals, land use, human toxicity (cancer), human toxicity, noncancer and ecotoxicity (freshwater) may be highly uncertain in LCAs that include capital goods/infrastructure in generic datasets in case infrastructure/capital goods contribute greatly to the total results. This is because the LCI data of infrastructure/capital goods used to quantify these indicators in currently available generic datasets sometimes lack temporal, technological, and geographical representativeness. Caution should be taken when using the results of these indicators for decision-making purposes.

Since this EPD includes module C, we strongly advise not to use the results of modules A1-A3 without considering the results of module C.

All figures refer to a declared unit of 1 liter of product.

Environmental Impacts

		Product stage	Construct	Use stage							End of life stage				Benefits and loads beyond the life cycle	
Environmental indicators		A1/A2/A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational enerov use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recovery, recycling
	Climate Change (total) [kg CO ₂ eq.]	3,84E+00	1,09E-02	2,63E-01	ND	ND	ND	ND	ND	ND	ND	0	4,30E-03	0	1,79E-02	-2,76E-02
	Climate Change (fossil) [kg CO2 eq.]	3,89E+00	1,08E-02	2,12E-01	ND	ND	ND	ND	ND	ND	ND	0	4,25E-03	0	1,78E-02	-2,81E-02
	Climate Change (biogenic) [kg CO ₂ eq.]	-4,59E-02	2,86E-05	5,08E-02	ND	ND	ND	ND	ND	ND	ND	0	1,16E-05	0	4,97E-05	4,91E-04
	Climate Change (land use change) [kg CO2 eq.]	6,69E-04	1,02E-04	4,62E-05	ND	ND	ND	ND	ND	ND	ND	0	3,97E-05	0	5,60E-05	2,72E-06
\bigcirc	Ozone depletion [kg CFC-11 eq.]	1,95E-08	9,60E-16	1,06E-09	ND	ND	ND	ND	ND	ND	ND	0	5,59E-16	0	4,58E-14	-1,42E-10
6	Acidification terrestrial and freshwater [Mole of H+ eq.]	2,47E-02	1,24E-05	1,26E-03	ND	ND	ND	ND	ND	ND	ND	0	5,47E-06	0	1,28E-04	-1,08E-04
	Eutrophication freshwater [kg P eq.]	3,65E-04	4,00E-08	1,92E-05	ND	ND	ND	ND	ND	ND	ND	0	1,57E-08	0	3,64E-08	-3,97E-06
	Eutrophication marine [kg N eq.]	3,12E-03	4,22E-06	1,74E-04	ND	ND	ND	ND	ND	ND	ND	0	1,92E-06	0	3,30E-05	-1,39E-05
	Eutrophication terrestrial [Mole of N eq.]	3,35E-02	4,99E-05	1,75E-03	ND	ND	ND	ND	ND	ND	ND	0	2,24E-05	0	3,64E-04	-1,86E-04
	Photochemical ozone formation - human health [kg NMVOC eq.]	1,26E-02	1,07E-05	6,58E-04	ND	ND	ND	ND	ND	ND	ND	0	4,79E-06	0	9,97E-05	-1,45E-04
	Resource use, mineral and metals [kg Sb eq.] 2	1,29E-06	7,12E-10	9,14E-08	ND	ND	ND	ND	ND	ND	ND	0	2,84E-10	0	8,33E-10	-9,30E-08
	Resource use, energy carriers [MJ] ²	6,25E+01	1,49E-01	3,23E+00	ND	ND	ND	ND	ND	ND	ND	0	5,84E-02	0	2,40E-01	-1,30E+00
Ø	Water deprivation potential [m ³ world equiv.] ²	1,94E+00	1,26E-04	9,90E-02	ND	ND	ND	ND	ND	ND	ND	0	5,18E-05	0	1,98E-03	-2,00E-02

² Disclaimer 2: The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Resources Use

	Product stage Construction stage Use stage						End of life stage				Benefits and loads beyond the life cycle					
Res	ources Use indicators	A1 / A2 / A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recovery, recycling
*	Use of renewable primary energy (PERE) [MJ] ³	1,86E+00	1,05E-02	1,01E-01	ND	ND	ND	ND	ND	ND	ND	0	4,26E-03	0	3,91E-02	-6,53E-02
*	Use of renewable primary energy resources used as raw materials (PERM) [MJ] ³	1,55E+00	0	-4,04E-01	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
} *	Total use of renewable primary energy resources (PERT) [MJ] ³	3,41E+00	1,05E-02	-3,04E-01	ND	ND	ND	ND	ND	ND	ND	0	4,26E-03	0	3,91E-02	-6,53E-02
0	Use of non-renewable primary energy (PENRE) [MJ] ³	6,20E+01	1,50E-01	3,23E+00	ND	ND	ND	ND	ND	ND	ND	0	5,87E-02	0	2,40E-01	-1,30E+00
0	Non-renewable primary energy resources used as raw materials (PENRM) [MJ] ³	4,98E-01	0	-8,62E-01	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
0	Total use of non-renewable primary energy resources (PENRT) [MJ] ³	6,25E+01	1,50E-01	2,36E+00	ND	ND	ND	ND	ND	ND	ND	0	5,87E-02	0	2,40E-01	-1,30E+00
	Input of secondary material (SM) [kg]	2,71E-06	0	1,36E-07	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
*	Use of renewable secondary fuels (RSF) [MJ]	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
0	Use of non-renewable secondary fuels (NRSF) [MJ]	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
0	Use of net fresh water (FW) [m ³]	4,51E-02	1,16E-05	2,30E-03	ND	ND	ND	ND	ND	ND	ND	0	4,67E-06	0	6,06E-05	-4,66E-04

³ From EPD International Construction Product PCR 1.3.2 (Annex 3). The option B was retained to calculate the primary energy use indicators.

Waste Category & Output flows

		Product stage	Construct	ion stage	Use stage					End of life stage				Benefits and loads beyond the life cycle		
	Waste Category & Output Flows	A1 / A2 / A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational	B7 Operational water	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recovery, recycling
	Hazardous waste disposed (HWD) [kg]	1,53E-05	5,53E-13	1,05E-06	ND	ND	ND	ND	ND	ND	ND	0	1,81E-13	0	5,23E-12	-6,24E-08
Ø	Non-hazardous waste disposed (NHWD) [kg]	4,85E-01	2,16E-05	1,09E-01	ND	ND	ND	ND	ND	ND	ND	0	8,95E-06	0	1,20E+00	1,45E-03
Ī	Radioactive waste disposed (RWD) [kg]	1,06E-05	1,93E-07	8,05E-07	ND	ND	ND	ND	ND	ND	ND	0	1,10E-07	0	2,74E-06	-5,53E-07
67	Components for re-use (CRU) [kg]	0	0	2,96E-02	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
67	Materials for Recycling (MFR) [kg]	3,14E-02	0	2,40E-02	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
6	Material for Energy Recovery (MER) [kg]	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
5	Exported electrical energy (EEE) [MJ]	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
	Exported thermal energy (EET) [MJ]	0	0	4,32E-02	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0

Supplementary indicator for climate impact (according to PCR)

		Product stage	Construct	tion stage				Use sta	age				End of life	e stag	е	Benefits and loads beyond the life cycle
Envir	onmental indicators	A1 / A2 / A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recovery, recycling
٩	GWP-GHG / GWP-IOBC [kg CO ₂ eq.] ⁴	3,89E+00	1,09E-02	2,12E-01	ND	ND	ND	ND	ND	ND	ND	0	4,28E-03	0	1,79E-02	-2,81E-02

Information on biogenic carbon content

		At factory gate
Biogeni	c Carbon Content in kg C	A1 / A2 / A3
•	Biogenic carbon content in product [kg]	0
Ŷ	Biogenic carbon content in packaging [kg]	1,36E-02

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

The packaging contains biogenic carbon due to wooden pallet and paper label.

⁴ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Additional information:

Indoor Environment

The product has a M1 Emission Classification of Building Materials. Document number: 3945/21.06.2022.

Conversion to mass

All the results of this EPD refer to the declared unit of 1 liter of product. The following conversion factor to can be used to multiply the results to 1 kg of product: 0,834.

Transport to other countries

The transport to building site (A4) in the main result is based on Finland. For transport to other countries per declared unit, additional sets of results are provided below, based on the below distances and other parameters from table of A4.

Country	Truck (km)	Ship (km)
Estonia	233	90
Latvia	548	90
Lithuania	833	90

	ESTONIA	LATVIA	LITHUANIA
	A4 Transport	A4 Transport	A4 Transport
Climate Change (total) [kg CO₂eq.]	1,34E-02	2,96E-02	4,44E-02
Climate Change (fossil) [kg CO₂ eq.]	1,33E-02	2,93E-02	4,38E-02
Climate Change (biogenic) [kg CO₂ eq.]	3,25E-05	7,51E-05	1,14E-04
Climate Change (land use change) [kg CO₂ eq.]	1,12E-04	2,63E-04	4,00E-04
Ozone depletion [kg CFC-11 eq.]	1,15E-15	2,58E-15	3,86E-15
Acidification terrestrial and freshwater [Mole of H+ eq.]	6.35E-05	8,18E-05	9,85E-05
Eutrophication freshwater [kg P eq.]	4,43E-08	1,04E-07	1,57E-07
Eutrophication marine [kg N eq.]	1,63E-05	2,27E-05	2,83E-05
Eutrophication terrestrial [Mole of N eq.]	1,84E-04	2,57E-04	3,24E-04
Photochemical ozone formation - human health [kg NMVOC eq.]	4,52E-05	6,12E-05	7,56E-05
Resource use, mineral and metals [kg Sb eq.]	7,96E-10	1,85E-09	2,81E-09
Resource use, energy carriers [MJ]	1,81E-01	4,03E-01	6,04E-01
Water deprivation potential [m ³ world equiv.]	1,42E-04	3.29E-04	4.99E-04
Use of renewable primary energy (PERE) [MJ]	1.17E-02	2.74E-02	4,15E-02
Primary energy resources used as raw materials (PERM) [MJ]	0	0	0
Total use of renewable primary energy resources (PERT) [MJ]	1.17E-02	2.74E-02	4,15E-02
Use of non-renewable primary energy (PENRE) [MJ]	1,81E-01	4.04E-01	6,05E-01
Non-renewable primary energy resources used as raw materials (PENRM) [MJ] ²	0	4,04⊑-01	0,05E-01
Total use of non-renewable primary energy resources used as raw materials (PENRM) [NJ]	1,81E-01	4.04E-01	6,05E-01
Input of secondary material (SM) [kg]	0	4,04Ľ-01	0,052-01
Use of renewable secondary fuels (RSF) [MJ]	0	0	0
Use of non-renewable secondary fuels (NRSF) [MJ]	0	0	0
Use of net fresh water (FW) [m ³]	1,28E-05	3,01E-05	4,58E-05
Hazardous waste disposed (HWD) [kg]	6,62E-13	1,49E-12	2,23E-12
Non-hazardous waste disposed (NHWD) [kg]	2.53E-05	5.72E-05	8,63E-05
Radioactive waste disposed (RWD) [kg]	2,33E-07	5,20E-07	7,80E-07
Components for re-use (CRU) [kg]	0	0	0
Materials for Recycling (MFR) [kg]	0	0	0
Material for Energy Recovery (MER) [kg]	0	0	0
Exported electrical energy (EEE) [MJ]	0	0	0
Exported thermal energy (EET) [MJ]	0	0	0
GWP-GHG / GWP-IOBC [kg CO₂ eq.]	1,34E-02	2,96E-02	4,43E-02

References

- 1. ISO 14040:2006: Environmental Management-Life Cycle Assessment-Principles and framework.
- 2. ISO 14044:2006: Environmental Management-Life Cycle Assessment-Requirements and guidelines.
- 3. ISO 14025:2006: Environmental labels and Declarations-Type III Environmental Declarations-Principles and procedures.
- 4. EN 998-1:2016 Specification for mortar for masonry Rendering and plastering mortar
- 5. EN 15804:2012+A2:2019/AC:2021 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products
- 6. EPD International (2021) General Programme Instructions for the International EPD® System. Version 4.0. www.environdec.com.
- 7. EN 15978 Sustainability of construction works Assessment of environmental performance of buildings Calculation method
- 8. The International EPD System PCR 2019:14 Construction products and Construction services. Version 1.3.2
- 9. European Chemical Agency, Candidate List of substances of very high concern for Authorization. https://echa.europa.eu/candidate-list-table
- 10. Project report for the verification of the Environmental Product Declaration of weber products, Saint-Gobain Finland Oy, 2025. LCA report-Mortar_2025_v1_waterproofing.docx

