

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:

Program operator:

Publisher:

Declaration number:

Registration number:

ECO Platform reference number:

Issue date:

Valid to:

Saint-Gobain Finland Oy

The Norwegian EPD Foundation

The Norwegian EPD Foundation

NEPD-2006-887-EN

NEPD-2006-887-EN

13.01.2020

13.01.2025

weber classic grout (11 colours)

Saint-Gobain Finland Oy

www.epd-norge.no

General information Product: Owner of the declaration: weber classic grout (11 colours) Saint-Gobain Finland Oy Contact person: Anne Kaiser Phone: +358400289933 e-mail: anne.kaiser@saint-gobain.com Program operator: Manufacturer: Saint-Gobain Finland Oy The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 97722020 e-mail: post@epd-norge.no Place of production: **Declaration number:** NEPD-2006-887-EN Parainen Premix plant Kalkkitehtaantie 21600 Parainen Finland ECO Platform reference number: Management system: ISO 9001:2015, ISO 14001:2015 and OHSAS 18001:2007 This declaration is based on Product Category Rules: Organisation no: FI09515553 CEN Standard EN 15804:2012+A1:2013 serves as core PCR. NPCR Part A: Construction products and services. Ver. 1.0. April 2017 Statement of liability: Issue date: 13.01.2020 The owner of the declaration shall be liable for the underlying Valid to: 13.01.2025 information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. **Declared unit:** Year of study: 1 kg weber classic grout (11 colours) 2019 Declared unit with option: Comparability: EPD of construction products may not be comparable if they not A1,A2,A3,A4 comply with EN 15804 and seen in a building context. Functional unit: Author of the Life Cycle Assessment: The declaration is developed using eEPD v3.0 from LCA.no Approval: Company specific data are: Collected/registered by: Riitta Helio Internal verification by: Anne Kaiser Verification: Approved: Independent verification of data, other environmental information and the declaration according to ISO14025:2010, § 8.1.3 and § 8.1.4 External Third party verifier: Sign

Senior Research Scientist, Anne Rønning

(Independent verifier approved by EPD Norway)

Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

weber classic grout is cement based tile grout for porous ceramic tiles. It is suitable for grouting porous wall tiles, glass mosaic and natural stone tiles. Weber classic grout has 13 shades of which 11 shades are included in this EPD (11 White, 12 Marble, 13 Silver gray, 14 Smoke, 15 Concrete, 16 Grey, 17 Medium gray, 19 Anthracite, 31 Cream, 32 Oak and 38 Leather).

Product specification

The composition of the product is described in the following table:

Materials	%
Filler	40-60%
Binder	30-50%
Additives	2-5%
Packaging	3.74%

Technical data:

Weber classic grout complies with EN 13888 - CG2WA class. For further information, see: https://www.fi.weber/files/fi/2019-04/weber-classic-grout-Tile-Grout-Product-Datasheet.pdf

Market:

Nordic and Baltic countries.

Reference service life, product

The reference service life of the product is similar to the service life of the building.

Reference service life, building

60 years.

LCA: Calculation rules

Declared unit:

1 kg weber classic grout (11 colours)

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

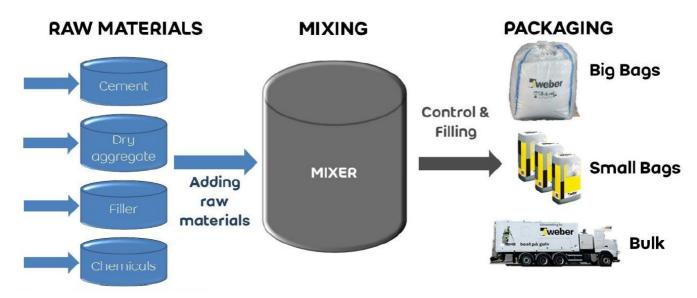
Machines and facilities (capital goods) required for and during the productionare excluded, as is transportation of employees.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Plant manufacturing data is collected for 2017. Raw materials, transport and production volumes are estimates for 2019. There is not yet a whole year available data, since the products are new and just come into production.

Materials	Source	Data quality	Year
Chemicals	Chemicals below cut-off	No data	0
Additives	ecoinvent 3.4	Database	2017
Filler	ecoinvent 3.4	Database	2017
Packaging	ecoinvent 3.4	Database	2017
Packaging	Modified ecoinvent 3.4	Database	2017
Packaging	ecoinvent 3.5	Database	2018
Binder	Supplier	EPD	2018

System boundary:

All processes from raw material extraction to product transport to the construction site are included in the analysis (A1 - A4). The flow chart below illustrates the system boundaries for the A1 to A3 part of the analysis.

Additional technical information:

The density of the product is 1.2 kg/dm3. Recommended water content for dry product is appr. 0,27-0,30 l/kg.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport to market (A4) is calculated based on the default distance of 300 km from NPCR 009. Additional information is given in the table below regarding distances to other relevant markets and calculation factors for converting GWP/A4 to the specific market.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck	55,0 %	Truck, lorry over 32 tonnes, EURO 5	300	0,022823	l/tkm	6,85
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

Additional A4 information	Unit/Range	Value
Tullinge, Sweden (truck / roro boat / truck to jobsite: 658 km)	Multiplication factor GWP/A4	1.61
Lilleström, Norway (truck / roro boat / truck to jobsite 1135km)	Multiplication factor GWP/A4	3.11
Karlslunde, Denmark (truck / roro boat / truck to jobsite: 1312 km)	Multiplication factor GWP/A4	3.67
Tallinn, Estonia (truck / roro boat / truck to jobsite: 563 km)	Multiplication factor GWP/A4	1.57
Riga, Latvia (truck / roro boat / truck to jobsite: 869 km)	Multiplication factor GWP/A4	2.54
Vilnius, Lithuania (truck / roro boat / truck to jobsite: 1162 km)	Multiplication factor GWP/A4	3.47

MOD	eiiin	uy	Mo	,

•	Unit	Value
Auxiliary	kg	
Water consumption	m ³	
Electricity consumption	kWh	
Other energy carriers	MJ	
Material loss	kg	
Output materials fr ste treatment	kg	
Dust in the air	kg	
VOC emissions	kg	

Use (B1)

•	Unit	Value

Maintenance (B2)/Repair (B3)

	Unit	Value
Maintenance cycle*	OCO	
Auxiliary	char.	
Other resources	4/16	20
Water consumption	Scenario	36
Electricity consumption	kWh	dite
Other energy carriers	MJ	
Material loss	kg	
VOC emissions	kg	

Replacement (B4)/Refurbishment (B5)

	Unit	Value
Replacement cycle*		
Electricity consumption	kWh	
Replacement of worn parts		

^{*} Described above if relevant

Operational energy (B6) and water consumption (B7)

	Unit	Value
Water consumption	m ³	
Electricity consumption	kWh	
Other energy carriers	MJ	
Power output of equipment	KW	

* Described above if relevant		
4,		
'A-		
14 2.		
4/6 -		
End of Life (C1, C 704		
ina	Unit	Value
Hazardous waste disposed	Unit kg	Value
Hazardous waste disposed Collected as mixed construction was	Unit kg	Value
Hazardous waste disposed Collected as mixed construction was Reuse	Unit kg kg	Value
Hazardous waste disposed Collected as mixed construction wb. Reuse Recycling	Unit kg kg kg	Value
* Described above if relevant A 7 A A A B C C C C C C C C C C C C C C C C	Unit kg kg kg	Value

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck					I/tkm	
Railway					I/tkm	
Boat			8		I/tkm	
Other Transportation					I/tkm	

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Product stage Construction installation stage		lation	User stage					End of life stage			Beyond the system bondaries					
	Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling- potential
ĺ	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	. D
ĺ	Χ	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	. MND

Environmental impact

Parameter	Unit	A1	A2	А3	A4
GWP	kg CO ₂ -eq	4,81E-01	1,07E-02	3,53E-03	2,62E-02
ODP	kg CFC11 -eq	1,26E-08	5,38E-10	4,45E-10	5,10E-09
POCP	kg C ₂ H ₄ -eq	5,80E-05	2,05E-06	2,17E-06	4,23E-06
АР	kg SO ₂ -eq	1,18E-03	6,92E-05	3,27E-05	8,51E-05
EP	kg PO ₄ ³⁻ -eq	1,64E-04	1,43E-05	1,22E-05	1,43E-05
ADPM	kg Sb -eq	3,82E-07	6,13E-09	2,59E-08	5,91E-08
ADPE	MJ	4,63E+00	1,57E-01	2,21E-02	4,11E-01

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

*INA Indicator Not Assessed

Resource use

Parameter	Unit	A1	A2	А3	A4
RPEE	MJ	7,85E-01	1,45E-03	4,36E-01	7,42E-03
RPEM	MJ	6,25E-01	0,00E+00	0,00E+00	0,00E+00
TPE	MJ	1,41E+00	1,45E-03	4,36E-01	7,42E-03
NRPE	MJ	4,77E+00	1,59E-01	2,27E-02	4,23E-01
NRPM	MJ	3,19E-01	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	5,09E+00	1,59E-01	2,27E-02	4,23E-01
SM	kg	8,92E-03	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	6,12E-02	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	3,45E-03	0,00E+00	0,00E+00	0,00E+00
W	m ³	1,41E-03	2,10E-05	1,25E-05	9,98E-05

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

*INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1	A2	А3	A4
HW	kg	8,19E-06	7,44E-08	4,07E-05	2,25E-07
NHW	kg	1,43E-02	4,49E-03	1,96E-02	3,84E-02
RW	kg	INA*	INA*	INA*	INA*

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

*INA Indicator Not Assessed

End of life - Output flow

Parameter	Unit	A1	A2	А3	A4
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	4,91E-04	0,00E+00	3,50E-04	0,00E+00
MER	kg	2,27E-04	0,00E+00	6,00E-04	0,00E+00
EEE	MJ	INA*	INA*	INA*	INA*
ETE	MJ	INA*	INA*	INA*	INA*

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: 9.0 E-03 = 9.0*10-3 = 0.009

*INA Indicator Not Assessed

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Renewable electricity with Guarantee of Origin from LOS (kWh)	Modified ecoinvent 3.4	60,20	g CO2-ekv/kWh
District heating, Parainen (kWh)	Modified ecoinvent 3.4	20,54	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskriften, Annex III), see table.

Name	CASNo	Amount
Portland Cement	65997-15-1	30-50%

Indoor environment

Regarding indoor air quality weber classic grout has a M1 indoor air emission classification granted by the Finnish Building Information Foundation (Suomen Rakennustietosäätiö, RTS).

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works. Core rules for environmental product declarations of construction products. ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3.0 - Background information for EPD generator system, LCA.no report number 04.18

Iversen et al., (2019) EPD generator for Saint-Gobain Weber and Scanspac - Background information and LCA data, LCA.no report number 05.18 NPCR Part A: Construction products and services. Ver. 1.0. April 2017, EPD-Norge.

NPCR 009 Part B for technical-chemical products. Ver. 1.0 June 2018, EPD-Norge.

epd-norge.no	Program operator and publisher	Phone:	+47 97722020
The Norwegian EPD Foundation	The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
8	0303 Oslo Norway	web:	www.epd-norge.no
	Owner of the declaration	Phone:	+358400289933
weber	Saint-Gobain Finland Oy	Fax:	
SAINT-GOBAIN	P.O. Box 70	e-mail:	anne.kaiser@saint-gobain.com
JAIN OODAIN	Fi-00381 Helsinki	web:	www.saint-gobain.fi
	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
(LCA)	Author of the Life Cycle Assessment LCA.no AS	Phone: Fax:	+47 916 50 916
(LCA)	•		+47 916 50 916 post@lca.no
LCA)	LCA.no AS	Fax:	
LCA no	LCA.no AS Dokka 1C	Fax: e-mail:	post@lca.no
LCA)	LCA.no AS Dokka 1C 1671 Kråkerøy	Fax: e-mail: web:	post@lca.no www.lca.no
LCA)	LCA.no AS Dokka 1C 1671 Kråkerøy Developer of EPD generator	Fax: e-mail: web:	post@lca.no www.lca.no